
Control Systems : Set 10 : Statespace (1) - Solutions
Prob 1 | Given the system

ẋ =

[
−5 1

−2 −1

]
x +

[
0

1

]
u

with zero initial conditions, find the steady-state value of x for a step input u.

We are given ẋ = Ax + Bu. Steady-state means that ẋ = 0 and a step input (or unit step)
means u = 1(t). Thus, assuming that the system is stable and A is invertible (which you
can check), we have

0 = Axss + B · 1
⇒ xss = −A−1B

=

[
−5 1

−2 −1

]−1 [
0

1

]
=

[
1
7
5
7

]
This can be verified in Matlab with the following code, as can be seen in the plot below.

A = [ -5 1 ; -2 - 1 ] ;
B = [ 0 ; 1 ] ;
C = eye ( s i z e (A) ) ;
D = [ 0 ; 0 ] ;

5 sys = ss (A,B,C,D) ;
step ( sys , 5 )
dcgain ( sys )
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Prob 2 | Consider the system shown below

U G1 =
1

s + 4
G2 =

1

2s
Y

H1 =
1

s
H2 =

1

s

x4 x1

+

+

− +

a) Find the transfer function from U to Y

Y = x1 + x4 +
1

s
x1

x1 =
1

2s
x4

 → Y =
2s2 + s + 1

2s2
x4

x4 =
1

s + 4

(
U −

1

s

(
x4 +

1

2s2
x4

))
→

x4
U
=

2s3

2s4 + 8s3 + 2s2 + 1

Putting these together gives

Y

U
=

s(2s2 + s + 1)

2s4 + 8s3 + 2s2 + 1

b) Write state equations for the system using the state variables indicated

Write out each of the states given in the time domain

x1 =
1

2s
x4 → ẋ1 =

1

2
x4

x2 =
1

s
x1 → ẋ2 = x1

x3 =
1

s
(x4 + x2) → ẋ3 = x4 + x2

x4 =
1

s + 4
(u − x3) → ẋ4 = −4x4 + u − x3

y = x1 + x2 + x4

Writing in standard state-space form gives

ẋ =


0 0 0 1

2

1 0 0 0

0 1 0 1

0 0 −1 −4

 x +

0

0

0

1

 u
y =

[
1 1 0 1

]



Prob 3 | Show that a transfer function is not changed by a linear transformation of the state.

Assume the original system is

ẋ = Ax + Bu

y = Cx +Du

G(s) = C(sI − A)−1B +D

Assume a change of state from x to z using the nonsingular transformation T

x = Tz

The new system matrices are

Ā = T−1AT B̄ = T−1B C̄ = CT D̄ = D

The transfer function is

Gz(s) = C̄(sI − Ā)
−1
B̄ + D̄

= CT (sI − T−1AT )−1T−1B +D

If we factor T on the left and T−1 on the right of the (sI − T−1AT )−1 term, we obtain

Gz(s) = CT (sTT
−1 − T−1AT )−1T−1B +D

= CTT−1(sI − A)−1TT−1B +D
= C(sI − A)−1B +D
= G(s)



Prob 4 | For each of the listed transfer functions, write the state equations in control canonical form. In
each case draw a block diagram and give the appropriate expressions for A, B and C.

a) G(s) = s2 − 2
s2(s2 − 1)

Re-write in standard form and then read off the coefficients

G(s) =
s2 − 2
s4 − s2

Control canonical form 
ẋ1
ẋ2
ẋ3
ẋ4

 =

0 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0



x1
x2
x3
x4

+

1

0

0

0

 u

y =
[
0 1 0 −2

] 
x1
x2
x3
x4



u
1

s

1

s

1

s

1

s
−2 y

x1 x2 x3 x4

1

+

+

b) G(s) = 3s + 4

s2 + 2s + 2

This one can be directly translated into control canonical form[
ẋ1
ẋ2

]
=

[
−2 −2
1 0

] [
x1
x2

]
+

[
1

0

]
u

y =
[
3 4

] [x1
x2

]



u
1

s

1

s
4 y

x2

3

−2

−2

x1



Prob 5 | Consider the system in the figure below.

U
s

s2 + 4
Y

a) Write a set of equations that describes this system in the control canonical form as ẋ =
Ax + Bu and y = Cx

There are two poles, so we will have two states[
ẋ1
ẋ2

]
=

[
0 −4
1 0

] [
x1
x2

]
+

[
1

0

]
u

y =
[
1 0

] [x1
x2

]

b) Design a control law of the form

u = −
[
K1 K2

] [x1
x2

]
which will place the closed-loop poles at s = −2± 2j

The desired characteristic equation is

(s + 2 + 2j)(s + 2− 2j) = s2 + 4s + 8

Since the system is in control canonical form, we can immediately write down the
control law as

K =
[
0 + 4 −4 + 8

]
=

[
4 4

]
c) Check your answer with Matlab

A = [0 -4 ; 1 0 ] ;
B = [ 1 ; 0 ] ;
p = [ -2+2* j , -2 -2* j ] ;
K = place (A,B, p)

5

K =

4 4



Prob 6 | Consider the electric circuit shown in the figure below 7045

Figure 7.90: Electric circuit for Problem 7.37.

(a) Apply Kirchho§ís voltage and current laws, with x1 = iL and x2 = vc, we obtain,

L _x1 +Rx1 = x2 +RC _x2;

_x2 = u! x1;
y = (u! x1)R

Thus,

!
_x1
_x2

"
=

!
!2R=L 1=L
!1=C 0

" !
x1
x2

"
+

!
R=L
1=C

"
u;

y =
#
!R 0

$
x+Ru:

(b) The condition for the system to be uncontrollable is det(C) =0.

C =
#
B AB

$
=

!
R=L !2R2=L2 + 1=LC
1=C !R=LC

"
:

det(C) = R2=L2C ! 1=LC2:

Thus, the system is controllable if R2 6= L=C.
(c) The condition for the system to be unobservable is,

O =

!
C
CA

"
=

!
!R 0
2R2=L !R=L

"
:

det(O) = R2=L:

Since det(O) 6= 0 for any R;L;C except R = 0 or L =1, the system is observable.

38. The block diagram of a feedback system is shown in Fig. 7.91. The system state is,

x =

!
xp
xf

"
;

and the dimensions of the matrices are as follows:

A = n& n; L = n& 1;
B = n& 1; x = 2n& 1;
C = 1& n; r = 1& 1;
K = 1& n; y = 1& 1;
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a) Write the internal (state) equations for the circuit. The input u(t) is a current, and the
output y is a voltage. Let x1 = iL and x2 = vc

Recall the the voltage drop across an inductor is v = Li̇ , and the current through a
capacitor is i = Cv̇ .
We can write the dynamic equations for this circuit as

i̇LL+ RiL = vc + RCv̇c Voltage drop across the two paths is the same
Cv̇c + iL = u Current into the top node is equal to the current out

y = (u − iL)R Ohm’s law gives the voltage drop across the output resistor

Re-write in matrix form[
L −RC
0 C

](
i̇L
v̇c

)
=

[
−R 1

−1 0

](
iL
vc

)
+

(
0

1

)
u

and solve for the derivative of the state(
i̇L
v̇c

)
=

[
−RL

1
L

− 1C 0

](
iL
vc

)
+

(
R
L
1
C

)
u

y =
[
−R 0

]( iL
vc

)
+ Ru

b) What condition(s) on R, L and C will guarantee that the system is controllable?

The system is controllable if and only if the controllability matrix is full rank.

C =
[
B AB

]
=

[
R
L

L−CR2
CL2

1
C − RCL

]
Test for uncontrollability by checking when the determinant is zero

det(C) = 0

= −
1

C2L

Therefore the system will be controllable for all (finite) capacitors and inductors.



Prob 7 | The linearized longitudinal motion of a helicopter near hover (figure below) can be modeled by
the normalized third-order systemq̇θ̇

u̇

 =
−0.4 0 −0.01
1 0 0

−1.4 9.8 −0.02

qθ
u

+
6.30
9.8

 δ
where

q = pitch rate
θ = pitch angle of fuselage
u = horizontal velocity (standard aircraft notation)
δ = rotor tilt angle (control variable)7062 CHAPTER 7. STATE-SPACE DESIGN

Figure 7.97: Helicopter for Problem 7.49.

normalized third-order system,
2

4
_q
_"
_u

3

5 =

2

4
!0:4 0 !0:01
1 0 0

!1:4 9:8 !0:02

3

5

2

4
q
"
u

3

5+

2

4
6:3
0

9:8

3

5 %;

where,

q = pitch rate;

" = pitch angle of fuselage;

u = horizontal velocity (standard aircraft notation);

% = rotor tilt angle (control variable):

Suppose our sensor measures the horizontal velocity u as the output; that is, y = u.
a) Find the open-loop pole locations.
b) Is the system controllable?
c) Find the feedback gain that places the poles of the system at s = !1" 1j and s = !2.
d) Design a full-order estimator for the system, and place the estimator poles at !8 and !4"
4
p
3j.

e) Design a reduced-order estimator with both poles at !4. What are the advantages and
disadvantages of the reduced-order estimator compared with the full-order case?
f) Compute the compensator transfer function using the control gain and the full-order estimator
designed in part (d), and plot its frequency response using Matlab. Draw a Bode plot for the
closed-loop design, and indicate the corresponding gain and phase margins.
g) Repeat part (f) with the reduced-order estimator.
h) Draw the symmetrical root locus (SRL) and select roots for a control law that will give a
control bandwidth matching the design of part (c), and select roots for a full-order estimator
that will result in an estimator error bandwidth comparable to the design of part (d). Draw
the corresponding Bode plot and compare the pole placement and SRL designs with respect to
bandwidth, stability margins, step response, and control e§ort for a unit-step rotor-angle input.
Use Matlab for the computations.

Solution:
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Suppose our sensor measures the horizontal velocity u as the output, that is y = u
Use Matlab to answer the following questions.

a) Find the open-loop pole locations.

Poles are the eigenvalues of A: −0.66, 0.12 ± 0.37i , These can be computed either
with eig(A) or with the command pole.

b) Is the system controllable?

Check the rank of the controllability matrix

rank(C)
[
B AB A2B

]
= 3

If we check the singular values with Matlab, we get 67.1, 7.1 and 5.2. We can conclude
that the matrix is nowhere near singular, and so this system is not close to being
uncontrollable.

c) Find the feedback gain that places the poles of the system at s = −1± 1j and s = −2



Using the Matlab place command, we get the controller

K =
[
0.47 1 0.063

]


